In △ ABC,sinA+sinB+sinC=1+√2 and cosA+cos+cosC=√2 if the triangle is
Given:
A+B+C=180
⇒sinA+sinB+sinC=1+√2
⇒Consider B=900
∴ A+C=90
∴ C=90−A
⇒sinA+sinC=√2
Hence we get
⇒sinA+cosA=√2.
Upon squaring both sides we get
⇒1+2sinA.cosA=2
⇒sin2A=1
⇒2A=π2
⇒A=C=π4.
Hence an isosceles right angled triangle.