wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In each of the Exercises 1 to 5, form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.
(1) xa+yb=1 (2) y2=a(b2x2) (3) y=ae3x+be2x
(4) y=e2x(a+bx) (5) y=ex(acosx+bsinx)

Open in App
Solution

pm(1) xa+yb=1
1a+dydx/b0
dydx=ba
x2a2+y2b2+2xyab=1
b2a2x2+y2+2xyba=1
x2(dydx)2+y22xydydx=1
(2) y2=a(b2x2)
2yy=c2ax
2yy′′+2y122a
a=yy′′+(y)2
2yy=2(yy′′+(y)2)x
(3) y=ae3x+be2x
(y=3ae3x2be2x)2
y′′=3ac3x+4be2x
2y=6ae3x4be2x
2y+y′′=15ae3x
a=2y+2y′′15e3x
y′′=915(2y+y′′)+4be2x
3x & 5y=6y+3y′′+4bex
b=e3x5y′′6y+3y′′9b
(4) y=e2x(a+bx)
y=e2xa+b×e2x
y=be2x+be2x+2bxe2x
y=(2a+2bx)e2x
y=2ye2x.
(5) y=ex(acosx+bsinx)
y=ex(acosx+bsinx)+ex(asinx+bcosx)
y′′=ex(acosx+bsinx)+ex(asinx+bcosx)+ex(asinx+bcosx)+ex(acosxbsinx)
y′′=ex(acosx+bsinx)±,ey
y′′=y2y.

1210234_1317411_ans_92abe1d01b074f63a117f2a4719c7d07.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Higher Order Derivatives
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon