wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ∆ABC, prove that:
(i) a cos B+cos C-1+b cos C+cos A-1+ccos A+cos B-1=0

(ii) cos Ab cos C+c cos B+cos Bc cos A+a cos C+cos Ca cos B+b cos A=a2+b2+c22abc

Open in App
Solution

Let ABC be any triangle.

i Consider the LHS of the given equation.LHS=acosB+cosC-1+bcosC+cosA-1+ccosA+cosB-1 =acosB+bcosC+acosC+bcosA+ccosA+ccosB-a+b+c =acosB+bcosA+bcosC+ccosB+acosC+ccosA-a+b+c =c+a+b-a+b+c ..Using projection formula : a=bcosC+ccosB, b=acosC+ccosA, c=acosB+bcosA =0=RHS ii Consider the LHS of the given equation. LHS=cosAbcosC+ccosB+cosBccosA+acosC+cosCacosB+bcosA =cosAa+cosBb+cosCc =b2+c2-a22abc+c2+a2-b22abc+a2+b2-c22abc =b2+c2-a2+c2+a2-b2+a2+b2-c22abc =a2+b2+c22abc=RHSHence proved.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
The Cost Curve
ECONOMICS
Watch in App
Join BYJU'S Learning Program
CrossIcon