Since PA is The bisector of ∠QPR
∠QPR=∠APR
in △PQM,∠PQM+∠PMQ+∠QPM=90∘→(1)
∠PQM+90+∠QPM=180∘ [∵PM⊥QE⇒∠PMQ=90∘]
∠PQM=90∘−∠QPM→(2)
In △PMR
∠PMR+∠PRM+∠RPM=180∘ [by angle sum property of triangle]
⇒90∘+∠PRM+∠RPM=180∘ [∵PM⊥QR⇒∠PMR=90∘]
∠PRM=90−∠RPM→(3)
on subtracting (3) from (2) we get
∠Q−∠R=(90−∠QPM)−(90∘−∠RPM)
(where ∠PQM=∠Q and ∠PRM=∠R)
∠Q−∠R=∠RPM−∠QPM
∠Q−∠R=[∠RPM+∠APM]−[∠QPA−∠APM]→(4)
∠Q−∠R=∠QPA+∠APM−∠QPA+∠APM
∠Q−∠R=2∠APM
∠APM=12(∠Q−∠R) Hence proved