The correct option is D 60o
ABisthechordofacirclewithcentreO.ABsubtends∠AOB=90otothecentreand∠ACBtothecircumference.∠ABC=30o.Tofindout−∠CAO=?Solution−ABsubtends∠AOB=90otothecentreand∠ACBtothecircumference.∴∠ACB=12∠AOB=12×90o=45o.(Theangle,subtendedbyachordtothecircumferenceofacircle,ishalfofthatsubtendedtothecentre).NowinΔACBwehave∠ACB+∠ABC=45o+30o=75o.∴∠BAC=180o−(∠ACB+∠ABC)=180o−75o=105o.(anglesumpropertyoftriangles)NowinΔAOBwehaveAO=BO(radiiofthesamecircle).∴∠OAB=∠OBAi.e∠OAB+∠OBA=2∠OAB.So∠AOB+∠OAB+∠OBA=∠AOB+2∠OAB=180o.(anglesumpropertyoftriangles).i.e90o+2∠OAB=180o⟹∠OAB=45o.∴∠CAO=∠BAC−∠OAB=105o−45o=60o.Ans−OptionB.