The correct option is
B Given that PA and PB are tangent lines.
PA= PB [ Since , the length of tangents drawn from an external point to a circle is equal ] ⇒ ∠PBA=∠PAB=θ In
ΔPAB,∠P+∠A+∠B=180∘ [Angle sum property of triangle] ⇒ 50∘+θ+θ=180∘ ⇒ 2θ=180∘−50∘=130∘ ⇒ θ=65∘ Also, OA
⊥ PA
[Since, tangents at any point of a circle is perpendicular to the radius through the point of contact]
∴ ∠PAO=90∘ ⇒ ∠PAB+∠BAO=90∘ ⇒ 65∘+∠BAO=90∘ ⇒ ∠BAO=90∘−65∘=25∘