It is given that ∠1:∠2=3:2. So, let
∠1=3x∘ and ∠2=2x∘
But ∠1 and ∠2 form a linear pair.
∴∠1+∠2=180∘
⇒3x∘+2x∘=180∘⇒5x∘=180∘
⇒x=180∘5=36∘
∴∠1=3x∘=(3×36)∘=108∘
and, ∠2=2x∘=(2×36)∘=72∘
Now, ∠1=∠3 and ∠2=∠4 [Vertically opposite angles]
∴∠4=72∘ and ∠3=108∘
Now, ∠6=∠2 and ∠3=∠7 [Corresponding angles]
⇒∠6=72∘ and ∠7=108∘ [∵∠2=72∘]
[Vertically opposite angles]
Again, ∠5=∠7 and ∠8=∠6
∴∠5=108∘ and∠8=72∘
Hence,∠1=108∘,∠2=72∘,∠3=108∘,∠4=72∘,∠5=108∘∠6=72∘,∠7=108∘ and ∠8=72∘.