In figure O is the centre of the circle. PQ is tangent to the circle and secant PAB passes through the centre O. If PQ=5cm and PA=1cm, then the radius of the circle is
A
24cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
10cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
12cm
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
5cm
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is B12cm Given−Thesecant¯POB&thetangentPQtoacirclewithcentreOhavebeendrawnfromapointPoutsidethecircle.PQtouchesthecircleatQand¯POBintersectsthethecircleatA&B.PQ=5cm&PA=1cm.Tofindout−theradiusofthecircle=x=?Solution−¯AOBisthediameterofthecirclesince¯POBpassesthroughO.NowPAisthesegmentofthesecant¯POBoutsidethecircle.So,bytangent−secantrule,thesquareofthetangent=secantsegment×segmentofthesecantoutsidethecirclewhenasecantandtangenttoacirclearedrawnfromapointoutsidethecircle.i.ePB×PA=PQ2⟹PB=PQ2PA=2521cm=25cm.∴Thediameter¯AOB=PB−PA=(25−1)cm=24cm.∴Theradius=x=¯AOB2=242cm=12cm.Ans−OptionC.