In In ΔABC, if 8R2=a2+b2+c2, then the triangle is
Right angled
8R2=a2+b2+c2=4R2(sin2A+sin2B+sin2C)⇒sin2A+sin2B+sin2C=2⇒(cos2A−sin2C)+cos2B=0⇒cos(A−C)cos(A+C)+cos2B=0⇒cos(A−C)cos(A+C)+cos2(π−(A+C))=0⇒cos(A+C)(cos(A−C)+cos(A+C))=0⇒cos(π−B)(2cosAcosC)=0⇒−2cosAcosCcosB=0
∴cosA=0 or cosB=0 or cosC=0⇒a=π2 or B=π2 or C=π2