Given that, ABCD is a rhombus and CDEF is a square. Also ∠ABC=56o
To find out: The measure of ∠DAG, ∠FEG, ∠GAC and ∠AGC
In the rhombus ABCD,
AB=BC=CD=AD
Also, in square CDEF,
CD=DE=EF=FC
Hence, AB=BC=CD=AD=DE=EF=FC
DE=AD
We know that, opposite angles of a parallelogram are equal.
∴ ∠ABC=∠ADC
Also, ∠ADE=∠EDC+∠ADC
∴ ∠ADE=90o+56o=146o
(i)InΔADE,
DE=AD
We know that, angles opposite to equal sides of a triangle are equal.
∴ ∠DEA=∠DAE=x(Let)
Hence, by interior angle sum property, ∠ADE+x+x=180o
∴ 2x=1800−1460
⇒2x=34o
∴ x=17o
Hence, ∠DAG=17o
(ii)∠FEG=∠DEF−∠DEG
⇒900−17o=73o
Hence, ∠FEG=73o
(iii) We know that, adjacent angles of a parallelogram are supplementary.
∴∠DAB+∠ABC=180o
∴ ∠DAB=180o−56o=124o
Also, the diagonal of a rhombus bisects the vertex angle.
∴ ∠DAC=12∠DAB
⇒ ∠DAC=12124o=62o
Now, ∠GAC=∠DAC−∠DAG
∴ ∠GAC=62o−170=45o
Hence, ∠GAC=45o
(iv)In ΔAGC,
∠AGC+∠GCA+∠GAC=180o [Interior angle sum property]
Also, ∠GCA=12∠DCB [Diagonal of a rhombus bisects the vertex angle]
And ∠DCB+∠ABC=180o [Adjacent angles of a parallelogram are supplementary]
∴ ∠GCA=121240=620
Hence, ∠AGC+62o+45o=180o
∴ ∠AGC=180o−1070=73o
Hence, ∠AGC=73o.