Given
∠AOB=90∘,AC=BC,OA=10cm,OC=13cm
Since AC=BC, C is the midpoint of AB
In right angled triangle the mid-point of the hypotenuse is equidistant from the vertices.
∴OC=CA=CB
⇒AC=CB=13cm
⇒AB=AC+CB=13+13=26cm
In right triangle AOB, (AB)2=(OA)2+(OB)2
⇒(OB)2=(AB)2−(OA)2
=(26)2−(10)2
=576
⇒OB=√576=24
∴OB=24cm
Hence area of triangle AOB=12×OA×OB
=12×10×24=120
Hence area of the triangle AOB=120cm2