wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the adjoining figure, O is any point inside a parallelogram ABCD. Prove that
(i) ar(OAB)+ar(OCD)=12ar(||gm ABCD),
(ii) ar(OAD)+ar(OBC)=12ar(||gm ABCD).

Open in App
Solution



Constructions: Draw EOF || AB and GOH || AD.
Proof: EOF || AB and DA cuts them.
∴ ∆OAB and parallelogram EABF being on the same base and between the same parallels AB and EF, we have:
ar(∆OAB) = 12 ar(parallelogram EABF) ...(i)
Similarly, ar(∆OCD) = 12 ar(parallelogram EFCD) ...(ii)
On adding (i) and (ii), we get:
ar(∆OAB) + ar(∆OCD) = 12 ⨯ ar(parallelogram EABF)​ + 12 ar(parallelogram EFCD)​
⇒ ar(∆OAB) + ar(∆OCD) = 12 ⨯ ​ar(parallelogram ABCD)

(ii)
∴ ∆OAD and parallelogram AHGD being on the same base and between the same parallels AD and GH, we have:
ar(∆OAD) =12ar(parallelogram AHGD) ...(iii)
Similarly, ar(∆OBC) = 12ar(parallelogram BCGH) ...(iv)

On adding (iii) and (iv), we get:
ar(∆OAD) + ar(∆OBC) =12⨯ ar(parallelogram AHGD)​ + 12ar(parallelogram BCGH)​
⇒ ar(∆OAD) + ar(∆OBC) = 12​​ ⨯​ ar(parallelogram ABCD)​

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Theorems
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon