In the expansion (1+x)5=1+5x+ax2......x5, find the value of a.
We can solve this if we know the binomial expansion of (1+x)5 .
Binomial expansion of (a+b)n is (a+b)n=an+nc1an−1b+nc2an−2b2+....bn
⇒(1+x)5=1+5c1x+5c2x2.......5c5x5
⇒a=5c2=5!3!×2!=10
Find the coefficient of x5 in the expansion of ((1+x)31x)