In △PBC,
PB = PC
∠PBC=∠PCB=x (Isosceles triangle property)
Sum of angle of △PBC,
∠PCB+∠PBC+∠BPC=180
x+x+140=180x = 20^{\circ}In\triangle ABC,AB=ACthus,\angle ABC = \angle ACB = z(Isoscelestriangleproperty)SumofanglesoftriangleABC,\angle ABC + \angle ACB + \angle BAC = 180z + z + 40 = 1802z = 140z = 70^{\circ}Now,\angle ACP = \angle ACB - \angle PCBy = 70 - 20y = 50^{\circ}$