The correct option is C 50∘
Since, BD = DC in ΔBDC
Therefore, ΔBDC is an isosceles Δ.
Now, by the property of isosceles Δ.
∠DBC=∠DCB=25∘
Now, ∠BDC=180∘−50∘=130∘ (Sum of angles of Δ=180∘)
Now, ABCD is a cyclic quadrilateral
⇒∠D+∠A=180∘
130∘+∠A=180∘
⇒∠A=∠BAC=50∘