⇒ AS∥BR [ P−A−S and Q−B−R ]
⇒ Also, AB∥SR [ Construction ]
∴ □ASRB is a parallelogram .
⇒ ∠S=90o [ Angles of rectangle PSRQ ]
A parallelogram is a rectangle , if one of its angles is a right angle.
∴ ASRB is a rectangle
⇒ ∠SAB=∠ABR=90o [ Angles of a rectangle ]
∴ TA⊥PS and TB⊥QR ---- ( 1 )
⇒ AS=BR ----- ( 2 ) [ Opposite sides of rectangle are equal ]
Similarly, we can prove AP=BQ ----- ( 3 )
In n△TAS
⇒ ∠TAS=90o [ From ( 1 ) ]
⇒ TS2=TA2+AS2 ----- ( 4 ) [ By Pythagoras theorem ]
In △TBQ,
⇒ ∠TBQ=90o [ From ( 1 ) ]
∴ TQ2=TB2+BQ2 ----- ( 5 )
Adding ( 4 ) and ( 5 ) we get,
TS2+TQ2=TA2+AS2+TB2+BQ2 ------ ( 6 )
In △TAP,
⇒ ∠TAP=90o [ From ( 1 ) ]
∴ TP2=TA2+AP2 ------ ( 7 )
In △TBR,
⇒ ∠TBR=90o
∴ TR2=TB2+BR2 ----- ( 8 )
Adding ( 7 ) and ( 8 ), we get,
⇒ TP2+TR2=TA2+AP2+TB2+BR2
∴ TP2+TR2=TA2+BQ2+TB2+AS2 [ From ( 2 ) and ( 3 )] ---- ( 9 )
From ( 6 ) and ( 9 ) we get,
⇒ TP2+TR2=TS2+TQ2