The correct option is A
L:(2M−L)
Given: Ar(ABCD) = L and Ar(ACED) = M
Since AB||DC and AD||BC.
Therefore, ABCD is a parallelogram.
We know that if a parallelogram and a triangle are on the same base and between the same parallels, then area of triangle is half the area of the parallelogram.
∴ Ar(ADC)=12Ar(ABCD)⇒Ar(ADC)=L2.......(i)Also, Ar(ACED)=Ar(Δ ADC)+Ar(Δ DEC)⇒M=L2+Ar(ΔDEC)⇒Ar(ΔDEC)=M−L2=2M−L2From (i) and (ii), we get Ar(ΔADC)Ar(ΔDEC)=L22M−L2=L2M−L∴Ar(ΔADC): Ar(ΔDEC)=L:(2M−L)
Hence, the correct answer is option (a).