In the given figure, AB is a diameter of a circle with centre O. If ADE and CBE are straight lines, meeting a E such that ∠BAD=35o and ∠BED=25o, Then : (i) ∠DCB (ii) ∠DBC (iii) ∠BDC, are respectively.
A
55o,100o&35o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
25o,120o&35o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
35o,115o&30o
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
65o,135o&255o
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C35o,115o&30o Given−OisthecentreofacirclewithdiameterAB.AD&BCarechordswhichhavebeenextendedtointersectatE.AB&CDarejoined.∠BAD=35o&∠BED=25o.Tofindout−∠DCB,∠DBC&∠BDCSolution−∠BAD=∠DCB=35o......(i)[sincebothofthemhavebeensubtendedbythechordBDtothecircumferenceatA&C].Now∠ACB=90osince∠ACBisangleinasemicircle,ABbeingthediameter.∴∠ACD=∠ACB−∠DCB=90o−35o=55o.Again∠ABD=∠ACD=55o[sincebothofthemhavebeensubtendedbythechordADtothecircumferenceatB&C].NowinΔACE,wehave∠CAD=180o−(∠ACB+∠BEA)=180o−(90o+25o)=65o.∴∠BAC=∠CAD−∠BAD=65o−35o=30o.∴∠BDC=∠BAC=30o.......(ii)[sincebothofthemhavebeensubtendedbythechordBCtothecircumferenceatA&D].AgainACBDisacyclicquadrilateral.∴∠CAD+∠DBC=180o(Thesumoftheoppositeanglesofacyclicquadrilateralis180o).So∠DBC=180o−∠CAD=180o−65o=115o.......(iii).∴∠DCB,∠DBC&∠BDCare35o,115o&30orespectively.Hence,optionCiscorrect.