In ΔABD and ΔPQD
∠D= ∠D (common)
∠BAD=∠QPD (corresponding angles)
So, ΔABD∼ΔPQD (by AA similarity criterion)
⇒ABPQ=BDQD (Ratio of corresponding sides of two similar triangles)
⇒xz=BQ+QDQD
⇒xz=BQQD+1
xz−1=BQQD
⇒x−zz=BQQD ---(i)
Similarly in ΔCBD and ΔPBQ
∠B=∠B (common)
∠BCD=∠BPQ (corresponding angles)
So,ΔCBD∼ΔPBQ (by AA similarity criterion)
⇒CDPQ=BDBQ (Ratio of corresponding sides of two similar triangles)
⇒yz=BQ+QDBQ
⇒yz=1+QDBQ
⇒y−zz=QDBQ
⇒zy−z=BQQD --(ii)
from (i) and (ii)
x−zz=zy−z
⇒(x−z)(y−z)=z2
⇒xy−yz−xz+z2=z2
xy=xz+yz
⇒1x+1y=1z