In the given figure AB||PQ||CD, AB = x units, CD= y units and PQ = z units, then 1x+1y=
1z
Since AB||PQ||CD, using A-A similarity ΔBQP∼ΔBDC and ΔDQP∼ΔDBA.
In ΔDQP and ΔDBA,QDBD=PQAB=zx
∴QDBD=zx−−−−(1)
In ΔBQP and ΔBDC,BQBD=PQCD=zy
∴BQBD=zy
⇒1−BQBD=1−zy
⇒BD−BQBD=y−zy
⇒QDBD=y−zy−−−−(2)
From (1)& (2), we get, zx=y−zy
⇒yx=y−zz⇒yx=yz−1
⇒1x+1y=1z
Alternate Solution:
Since AB||PQ||CD, using A-A similarity ΔBQP∼ΔBDC and ΔDQP∼ΔDBA.
In ΔDQP and ΔDBA,QDBD=ba+b=zx−−−−(1)
In ΔBQP and ΔBDC,BQBD=aa+b=zy−−−−(2)
Adding 1 and 2, we get,
a+ba+b=zx+zy
⇒1=z(1x+1y)
⇒1x+1y=1z