In the given figure, ABCD is a parallelogram. P and Q are midpoints of AB and AD respectively. Area Δ CPQ : Area of parallelogram ABCD is equal to
3 : 8
(i) ABCD is a parallelogram ...... (given)
(ii) Area Δ ABD=12 area parallelogram ABCD .... (diagonal divides a parallelogram into two triangles of equal area)
(iii) Area Δ ABQ=12 Area Δ ABD ..... (median divides a triangle into two triangles of equal area)
=14 area parallelogram ABCD .... (from (ii))
(iv) Area Δ APQ=12 Area Δ ABQ .... (median divides a triangle into two triangles of equal area)
=18 area parallelogram ABCD ……(from(iii))
(v) Area Δ CDQ=12 area Δ ACD ..... (median divides triangle into two triangles of equal area)
=12 [ 12 area parallelogram ABCD] .... (diagonal divides a parallelogram into two triangles of equal area)
=14 area parallelogram ABCD
(vi) Area Δ CBP=12 Area Δ ACB .... (median divides triangle into two triangles of equal area)
=12 [12 area parallelogram ABCD] ....(diagonal divides a parallelogram into two triangles of equal area)
=14 area parallelogram ABCD
(viii) Using equations (iv), (v) and (vi) we get,
Area Δ APQ + Area Δ CDQ + Area Δ CBP=(18+14+14) area parallelogram ABCD
=58 area parallelogram ABCD
Hence area Δ CPQ=(1−58) area parallelogram ABCD
=38 area parallelogram ABCD
area Δ CPQ : area parallelogram ABCD = 3 : 8