We know that equal chords of a circle subtend equal angles at the centre.
⇒∠AOD=∠COD=x
Since, the central angle of a circle is 360∘
So, ∠AOB+∠BOC+∠COD+∠AOD=360∘
⇒60∘ +30∘+x+x=360∘
⇒90∘ +2x=360∘
⇒2x=270∘
⇒x=135∘
∠COD = ∠AOD = 135∘
Consider triangle COD.
CO = OD (radii of the circle)
∠OCD = ∠ODC (angles opposite to the equal sides)
Assume, ∠OCD = ∠ODC = y
Use angle sum property of the triangle.
∠OCD + ∠ODC + ∠COD = 180∘
⇒y+y+135∘=180∘
⇒2y=45∘
⇒y=22.5∘
∠ODC = 22.5∘
Similarly,
Consider triangle AOD.
AO = OD (radii of the circle)
∠OAD = ∠ODA (angles opposite to the equal sides)
Assume, ∠OAD = ∠ODA = z
Use angle sum property of the triangle.
∠OAD + ∠ODA + ∠AOD = 180∘
⇒z+z+135∘=180∘
⇒2z=45∘
⇒z=22.5∘
∠ODA = 22.5∘
∠ADC = ∠ODC + ∠ODA
∠ADC = 22.5∘ + 22.5∘
∠ADC = 45∘