The correct option is
A True
In
△DBE,
DB=DE
Hence, ∠DBE=∠DEB=x (I)
In △DAE,
DA=AE
Hence, ∠DAE=∠DEA=y (II)
Now, In △ABE,
∠ABE+∠BAE+∠AEB=180∘ (Sum of angles of triangle)
∠ABE+∠BAE+∠BED+∠DEA=180∘
x+x+y+y=180∘
x+y=90∘
∠DEB+∠DEA=90∘
∠AEB=90∘
Hence, ∠AEB=∠AEC=90∘
In △AEF,
Sum of angles=180∘
∠AEF+∠EAF+∠EFA=180∘
∠AEF+∠EAF+90∘=180∘
∠AEF=90∘−∠EAF
We know, ∠AEC=90∘
∠AEF+∠FEC=90∘
90∘−∠EAF+∠FEC=90∘
or ∠EAF=∠FEC=∠CEG