In the given figure, AO and BO are bisecters of \(\angle A\) and \(\angle B\) repectively. If \(\angle C=125^{\circ}\) and \(\angle D =75^{\circ}\), then x=
∠A+∠B+75+125=360∘ (Sum of angles of a quadrilateral)
∠A+∠B=360∘−200∘
=160∘
AO bisects ∠A and Bo bisects ∠B (given)
∴∠A+∠B2=160∘2=80∘
In ΔAOB
∠A2+∠B2+x=180∘ (sum of ∠s of a Δ)
80∘+x=180∘
∴x=100∘
Hence (D)