In the given figure, AOB is a straight line. If ∠AOC=(3x+10)∘ and ∠BOC=(4x−26)∘, then ∠BOC=?
(a) 96∘
(b) 86∘
(c) 76∘
(d) 106∘.
Open in App
Solution
Since, the sum of the linear pair of angles is always equals to 180∘. Given angles ∠AOC=(3x+10)∘ and ∠BOC=(4x−26)∘ forms a linear pair. So,∠AOC+∠BOC=180∘ ⇒3x+10+4x−26=180 ⇒7x−16=180 ⇒7x=180+16 ⇒7x=196 ∴x=28∘ Hence, ∠BOC=(4×28)−26, ∠BOC=112−26 ∴∠BOC=86∘.