wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, chords AB=Ac=6 cm. if radius is 5 cm, the length of BC is

Open in App
Solution

REF.Image.
AB = AC = 6cm & radius = 5cm, BC = ?
AB=AC
OA is bisctor of BAC
P divides BC in the ratio
6:61:1
P is mid point of BC.
OPBC.
Consider ABP,
(AB)2=(AP)2+(BP)2
(BP)2=(6)2(AP)2...(1)
Also, OBP,
(OB)2=(OP)2+(BP)2
(BP)2=25(5AP)2...(2)
from equation (1)& (2),
62(AP)2=25(5AP)2
36(AP)2=2525+(AP)2+10AP
AP=3.6cm
putting this value in (1), we get
(BP)2=36(3.6)2=23.04
BP=4.8cm
BC=BP+PC=2BP=2×4.8
=9.6cm
BC=9.6cm Answer

1159632_1144438_ans_c1777a77971242af98ca9f391c4d668a.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Chord Properties of Circles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon