In the given figure, DE || BC and AD : DB = 5 : 4, then area of ΔDOEarea of ΔDCE is
BFD, CDE
Given, ADDB=54
⇒ADAD+DB=55+4⇒ADAB=59
In ΔADE and ΔABC,
∠ADE=∠ABC [corresponding angles]
and ∠A=∠A [common]
∴ΔADE∼ΔABC, [by AA similarity]
⇒DEBC=ADAB=59⇒DE:BC=5:9
Now, in ΔDOE and ΔCOB,
∠OED=∠OBC [alternate angles]
∠DOE=∠BOC [vertically opposite angles]
∴ΔDOE∼ΔCOB [by AA similarity]
⇒DOOC=DEBC=59⇒DOOD+OC=55+9⇒DODC=514
Now, draw EN⊥CD
∴Area of ΔDOEArea of ΔDCE=12×DO×EN12×DC×EN=DODC=514