In the given figure, O is the centre of the circle with AC = 24 cm, AB = 7 cm and ∠ BOD = 90∘. Find the area of shaded region.
[Use π = 3.14]
In right triangle ABC
BC2=AB2+AC2=72+242=49+576=625∴ BC2=625⇒BC=25
So,
Area of a circle =π×r2=227×12.52
=491.07 cm2
Also,
Area of triangle ABC=12×(AC×AB)
=12×(24×7)=84 cm2
Since, ∠BOD=90° and ∠COD=∠BOD−90° (Linear pair)
So, ∠COD=90°
OC=BC2=252=12.5 cm
So, sector OCDO is a quadrant.
Area of sector OCDO=14×(π×r2)
=14×227×12.5×12.5 =122.7 cm2.
Area of the shaded region = area of the circle - area of triangle ABC - area of sector OCDO.
=491.07−84−122.7=284.37cm2
So, the area of the shaded region is approx 284.37 cm2