wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In the given figure, P is a point on AB such that AP : PB = 4 : 3. PQ is parallel to AC.
(i) Calculate the ratio PQ : AC, giving reason for your answer. (ii) In triangle ARC, ARC = 90 and in triangle PQS, PSQ = 90. Given QS = 6 cm, calculate the length of AR.

Open in App
Solution

(i) Given, AP: PB = 4: 3.

Since, PQ || AC. Using Basic Proportionality theorem,

fraction numerator A P over denominator P B end fraction equals fraction numerator C Q over denominator Q B end fraction fraction numerator C Q over denominator Q B end fraction equals 4 over 3 fraction numerator B Q over denominator B C end fraction equals 3 over 7 minus negative negative open parentheses 1 close parentheses

Now, PQB = ACB (Corresponding angles)

QPB = CAB (Corresponding angles)

i e increment P B Q tilde increment A B C space space space open parentheses A A space s i m i l a r i t y close parentheses fraction numerator P Q over denominator A C end fraction equals fraction numerator B Q over denominator B C end fraction fraction numerator P Q over denominator A C end fraction equals 3 over 7 space space space space space space open square brackets u sin g open parentheses 1 close parentheses close square brackets

(ii) ARC = QSP = 90o

ACR = SPQ (Alternate angles)

therefore increment A R C tilde increment Q S P space space space open parentheses A A space s i m i l a r i t y close parentheses fraction numerator A R over denominator Q S end fraction equals fraction numerator A C over denominator P Q end fraction fraction numerator A R over denominator Q S end fraction equals 7 over 3 A R equals fraction numerator 7 cross times 6 over denominator 3 end fraction equals 14 space c m


flag
Suggest Corrections
thumbs-up
9
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Proportionality Theorem
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon