In the given figure, PQ is a diameter of the circle whose centre is O. Given ∠ ROS=42∘, ∠ RTS = ____________
=69∘
In Δ OPR, OR=OP (radii of the same circle)
∴ ∠ OPR=∠ ORP=x (Say)
∴ ∠ POR=180∘−2x
Similarly in Δ OQS
OS = OQ
∴ ∠ OSQ=∠ SQO=y (say)
∴ ∠ SOQ=180∘−2y
POQ is a straight line,
∠ POR+∠ ROS+∠ SOQ=180∘
⇒ 180∘−2x+42∘+180∘−2y=180∘
⇒ 222∘−2x−2y=0 ⇒ 2(x+y)=222∘
∴ x+y=111∘ . . . (i)
In Δ PQT,
⇒ ∠ P+∠ Q+∠ T=180∘
⇒ ∠ OPR+∠ SQO+∠ RTS=180∘
x+y+∠ RTS=180∘
∴ ∠ RTS=180∘−(x+y)
=180∘−111∘ [from (i)]
=69∘