Let the common ratio be a
Then y=4a and z=5a
Also, ∠z = ∠m (Alternate interior angles)
Since, z=5a,
∠m=5a [RS ∥ XY cut by transversal t]
Now, ∠m = ∠ x (Corresponding angles)
Since, ∠m=5a
∴∠x=5a [PQ ∥ RS cut by transversal AB]
∠x+∠y=180∘ (Co-interior angles)
5a+4a=180∘
9a=180∘
a=1809
a=20∘
Since, y=4a
∴y=4×20
y=80∘
z=5a
∴z=5×20
z=100∘
x=5a
∴x=5×20
x=100°