Given
PQ=6cm,PR=12cm,PS=6cmPR2=PS2+RS2
LetQS=xcm
∴RS=(6+x)cm
⟹122=62+(6+x)2
√108=6+x⟹x=4.39cm
∴QS=x=4.39cm
Now,consider△PSQ
PQ2=PS2+QS2
⟹PQ=√62+4.392=7.43cm
Consider△PTQ
AsPR=12cm and T divides PR in some unknown ratio.
LetPT=(12−x)cmandRT=′x′cm.
In△PTQ,:PQ2=PT2+QT2
QT2=PQ2−PT2
⟹QT2=7.432−(12−x)2−(1)
From△RQT
RQ2=RT2+QT2
⟹QT2=RQ2−RT2
∴QT2=62−x2−(2)
equating(1)&(2)
7.432−(12−x)2=62−x2
19.205=144−24x+x2−x2
∴x=5.2cm
∴QT=√62−x2=2.99cm