The correct option is B pq,qp
In the given equation a=pq,b=−(p2+q2),c=pq
Finding the roots using formula x=−b±√(b2−4ac)2a
⇒x=(p2+q2)±√(−(p2+q2))2−4(p2q2)2pq
x=(p2+q2)±√(p2+q2)2−4(p2q2)2pq
=−(p2+q2)±√(p2−q2)22pq [Since, (a+b)2−4ab=(a−b)2]
=(p2+q2)±(p2−q2)2pq
x=−(p2+q2)+(p2−q2)2pq or x=−(p2+q2)−(p2−q2)2pq
x=p2−q2+(p2−q2)2pq or x=p2+q2−p2+q2)2pq
x=2p22pq or x=2q22pq
Substituting and simplifying we get, x=pq and qp