In the system of equations 6x+y−3x−y=2 and 4x+y+6x−y=4, the value of x and y will be
and 4x+y+6x−y=4 ......(ii)
If 1x+y=a and 1x−y=b, then the equation will be:
⇒6a−3b=2 .....(iii)
⇒4a+6b=4 .....(iv)
On multiplying equation (iii) by 2 and adding to equation (iv),
⇒2(6a−3b)+4a+6b=2×2+4
∴12a−6b+4a+6b=4+4
⇒16a=8⇒a=816=12
On substituting this value of a in equation (iii),
6×12−3b=2⇒3b=1⇒b=13
Since 1x+y=a=12⇒x+y=2 ......(v)
and 1x−y=b=13⇒x−y=3 .....(vi)
On adding equations (v) and (vi),
2x=5⇒x=52
On substituting this value of x in equation (v),
⇒52+y=2
∴x=52 and y=−12.