The correct option is
A (1,−113)Given:A=(1,10),Orthocentre H=(113,43) and circumcentre O=(−13,23)
We know that centroid divides line segment joining O and H in the ratio 1:2
Now,G=⎛⎜
⎜
⎜⎝1×113+2×−131+2,1×43+2×231+2⎞⎟
⎟
⎟⎠
G=(11−29,4+49)=(1,89)
If A(x1,y1),B(x2,y2) and C(x3,y3) then its centroid G=(x1+x2+x33,y1+y2+y33)
Here x1=1,y1=10
Hence let us find the mid point of BC.
Midpoint M=(x1+x22,y1+y22)
Comparing the coordinates of G,we get
x1+x2+x33=1 and y1+y2+y33=89
Now substituting the values of A we get
1+x2+x33=1 and 10+y2+y33=89
1+x2+x31=3 and 10+y2+y31=83
x2+x3=3−1=2 and y2+y3=83−10
x2+x3=2 and y2+y3=−223
x2+x32=1 and y2+y32=−113
Hence M=(1,−113)
Hence the midpoint is (1,−113)