Given :
bcotB+ccotC=2(r+R)⇒2RsinB⋅cosBsinB+2RsinC⋅cosCsinC=2(r+R)⇒cosB+cosC=1+rR⇒cosB+cosC=1+4sinA2sinB2sinC2⇒cosB+cosC=cosA+cosB+cosC∴cosA=0⇒A=π2
So, a2=b2+c2
⇒b2+c2=100⋯(i);a=10
Using A.M≥G.M.
⇒b2+c22≥√b2c2⇒bc≤50⇒bc2≤25
So, maximum area of triangle is 25 sq.units