In triangle ABC if a=2,b=3 and tanA=√35 and the two possible values of the side c are K1√10 and K2√10, then K1 and K2 are equal to?
tanA=√35⇒cosA=√58cosA=b2+c2−a22bc√58=9+c2−46c√8c2−6√5c−4√8=08c2−6√40c−32=02c2−3√10c−8=0c=√10,√102
So options A and B are correct