A+B+C=π
⇒A+B=π2∴B=π2−Asin(A−B)=sin(A−π2+A)=sin(2A−π2)=−sin(π2−2A)=−cos(2A)=−(2cos2A−1)=1−2cos2A
cosA=bc∴1−2cos2A=1−2(b2c2)=c2−2b2c2
By Pythagoras theorem,
c2=a2+b2⟶1⇒sin(A−B)=1−2cos2A=c2−2b2c2
Using 1
⇒sin(A−B)=a2+b2−2b2a2+b2=a2−b2a2+b2⇒sin(A−B)=a2+b2−2b2a2+b2=a2−b2a2+b2