wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In ABC, if B=3C, prove that cosC=(b+c2c), sinC=(3cb4c) and sinA2=bc2c

Open in App
Solution

b+c4c=sinB+sinC4sinC
=sin3C+sinC4sinC=2sin2CcosC4sinC
=4sinCcosCcosC4sinC=cos2C.
cosC=(b+c)/4c
sinC=(1cos2C) etc.
Again bc2c=sinBsinC2sinC
=sin3CsinC2sinC=2cos2CsinC2sinC=cos2C.
But A+B+C=1800 and B=3C
A+4C=1800 and B=3C
A+4C=18004C=1800A
or 2C=90012A.
Hence bc2c=cos(900A2)=sinA2
Alt. sinbsinc=bc or sin3CsinC=bc
or 34sin2CbcsinC=3cb4c
Again A=1800(B+C)=18004C.
A/2=9002C,
sin(A/2)=9002C,
sin(A/2)=cos2C=1sin2C etc.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon