wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

In triangle ABC, if sin2A+sin2B+sin2Ccos2A+cos2B+cos2C=2

then the triangle is

A
right-angled
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
equilateral
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
isosceles
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
obtuse-angled
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A right-angled
sin2A+sin2B+sin2Ccos2A+cos2B+cos2C=2

sin2A+sin2B+sin2C=2cos2A+2cos2B+2cos2C

sin2A+sin2B+sin2C=2(1sin2A)+2(1sin2B)+2(1sin2C)

3(sin2A+sin2B+sin2C)=6

sin2A+sin2B+sin2C=2

1cos2A2+1cos2B2+1cos2C2=2

3(cos2A+cos2B+cos2C)=4

cos2A+cos2B+cos2C=1

A+B+C=π2C=2π2(A+B)

Hence, 2cos(2A+2B2)cos(2A2B2)+cos(2π2(A+B))=1

2cos(A+B)2cos(AB)+cos2(A+B)=1

2cos(A+B)cos(AB)+2cos2(A+B)1=1

2cos(A+B)[cos(AB)+cos(A+B)]=0

2cos(πC)×2cosAcos(B)=0

4cosAcosBcosC=0

A=90o or B=90o or C=90o

Hence, ΔABC is a right triangle.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon