The correct option is
A 33032,33031⇒ Let a=10,b=11 be two given numbers and H1andH2 are 2 harmonic mean between a and b.
⇒ Now, a,H1,H2,b are in H.P.
⇒ 1a,1H1,1H2,1b are in A.P.
⇒ Let D be the common difference of this A.P.
⇒ D=a−b(n+1)ab=10−11(2+1)×10×11=−1330
⇒ Now, 1H1=1a+D=110+(−1330)=32330 ...... (1)
⇒ 1H2=1a+2D=110+2×(−1330)=31330 ....... (2)
Hence from (1) and (2), we get H1=33032,H2=33031.