The correct option is C π2ab
I=∫π/201a2cos2x+b2sin2xdx
I=∫π/201a2cos2x[1+b2a2tan2x]dx
I=∫π/201a2[1+b2a2tan2x]dx
Put, ba⋅tanx=u
∴basec2x=dudx
du=basec2xdx⇒sec2xdx=abdu
Also, x=0⇒u=0 and x=π2⇒u=∞
I=∫∞0ab⋅1.dua2[1+u2]
I=∫∞01ab⋅du1+u2
I=1ab∣∣tan−1u∣∣∞0=1ab(tan−1∞−tan−10)
I=1ab[π2−0]
I=π2ab