∫2dy1+tany
Let u=tany⇒du=sec2ydy=(1+u2)dy
=2∫du(1+u2)(1+u)
=∫(1−u1+u2+11+u)du
=[∫du1+u2−12∫2du1+u2+∫du1+u]
=[tan−1u−12log(1+u2)+log(1+u)]+c
=tan−1tany−12log(1+tan2y)+log(1+tany)+c where u=tany
=y−12log(sec2y)+log(1+tany)+c
=y−logsecy+log(1+tany)+c
=y+log(1+tanysecy)+c