Consider the given integral.
I=∫cos(tan−1x)(1+x2)√sin(tan−1x)dx
Let t=tan−1x
dt=(11+x2)dx
Therefore,
I=∫cost√sintdt
Let p=sint
dp=costdt
Therefore,
I=∫1√pdp
I=2√p+C
On putting the all values, we get
I=2√sint+C
I=2√sin(tan−1x)+C
Hence, this is the answer.