∫x−sin x1+cos xdx=x tan(x2)+p log∣∣sec(x2)∣∣+c⇒p=
-4
4
2
-2
I=∫(x2sec2x2−tanx2)dx I=x tanx2−4 log∣∣secx2∣∣+c ⇒p=−4
If xϵR and nϵI, then the determinant Δ=∣∣ ∣ ∣∣sin(nπ)sinx−cosxlog(tanx)cosx−sinxcos[(2n+1)π2]log(cotx)log(cotx)log(tanx)tan(nπ)∣∣ ∣ ∣∣