∫xsin−1x√1−x2dx[Here1stFunction=sin−1x2ndFunction=x√1−x2]
⇒ Using integration by part 5
∫I.II dx=I ∫II dx−∫(dIdx∫II dx)dx
⇒ ∫xsin−1x√1−x2dx=sin−1x∫x√1−x2dx−∫(1√1−x2∫x√1−x2dx)dx
Now Solving, Here ∫x√1−x2dx=∫−dt2√t Putting 1−x2=t
−2x dx=dt
x dx=−dt2
=−12t1/2=−√t
=−√1−x2
Hence, ∫xsin−1x√1−x2dx=sin−1x[−√1−x2]−∫1√1−x2×−√1−x2dx
=−√1−x2sin−1x+x22+C where C= constant of Integration.