The correct option is A π6 ln(23)
Let f(x)=ln(sinx)⇒f−1x=sin(ex)
π6∫π3ln(sinx)dx−12ln(34)∫−ln2sin−1exdx
=π6∫π3f(x)dx−12ln(34)∫−ln2f−1(x)dx
Let f−1(x)=t⇒x=f(t)⇒dx=f′(t) dt
π6∫π3f(x)dx−π3∫π6t.f′(t)dt
=π6∫π3f(x)dx−[[tf(t)]π3π6−π3∫π6f(t)dt]
π6∫π3f(x)dx−[tf(t)]π3π6−π6∫π3f(t)dt
=−π6ln2−π6ln34=π6ln(23)