The correct option is
A 16{x3√x6−1−log(x3+√x6−1)}+c∫x2√x6−1dx
Applyu−substitution:u=x6
=∫√u−16√udu
=16⋅∫√u−1√udu
ApplyIntegrationByParts:u=√u−1,v′=1√u
=16(2u12√u−1−∫√uu−1du)
=16(2u12√u−1−(√uu−1(u−1)+ln∣∣√u+√u−1∣∣))
=16(2√x6√x6−1−(√x6x6−1(x6−1)+ln∣∣√x6+√x6−1∣∣))
=16(x3√x6−1−ln∣∣x3+√x6−1∣∣)+C