wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

xcos1xdx

Open in App
Solution

xcos1x dx
Let x=cosθ
dx=sinθdθ
xcos1x dx=θ(sinθcosθ)dθ

=12θsin2θdθ

=12[θsin2θdθ(dθdθsin2θdθ)dθ]

=12[θ2cos2θ+12cos2θdθ]

=12[θ2cos2θ+12sin2θ2]+C

=θ4cos2θ18sin2θ+C

=θ4(2cos2θ1)14sinθcosθ+C

=θ4(2cos2θ1)14cosθ1cos2θ+C

=cos1x4(2x21)x41x2+C

=(2x21)4cos1xx41x2+C

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Parts
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon