∫xcos−1x dxLet x=cosθ
dx=−sinθdθ
∫xcos−1x dx=∫−θ(sinθcosθ)dθ
=−12∫θsin2θdθ
=−12[θ∫sin2θdθ−∫(dθdθ∫sin2θdθ)dθ]
=−12[−θ2cos2θ+12∫cos2θdθ]
=−12[−θ2cos2θ+12sin2θ2]+C
=θ4cos2θ−18sin2θ+C
=θ4(2cos2θ−1)−14sinθcosθ+C
=θ4(2cos2θ−1)−14cosθ√1−cos2θ+C
=cos−1x4(2x2−1)−x4√1−x2+C
=(2x2−1)4cos−1x−x4√1−x2+C