Consider the following integral .
I=∫xsinxsec3xdx=∫xtanxsec2x
let t=tanx and differentiate both side w.r.t x, we get.
dtsec2x=dx
=∫ttan−1tsec2xsec2xdt
=∫ttan−1tdt
=tan−1t∫tdt−12∫11+t2t2dt
=tan−1t∫tdt−12(∫t2+1−11+t2dt)
=tan2x2tan−1(tanx)+tan2x2tan−1(tanx)−tanx2+C
=tan2xtan−1(tanx)−tanx2+C
Hence, this is the correct answer.
.